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Abstract
Early screening is crucial in reducing the mortality of colorectal cancer (CRC). Current screening methods, including fecal 
occult blood tests (FOBT) and colonoscopy, are primarily limited by low patient compliance and the invasive nature of the 
procedures. Several advanced imaging techniques such as computed tomography (CT) and histological imaging have been 
integrated with artificial intelligence (AI) to enhance the detection of CRC. There are still limitations because of the chal-
lenges associated with image acquisition and the cost. Kidney, ureter, and bladder (KUB) radiograph which is inexpensive 
and widely used for abdominal assessments in emergency settings and shows potential for detecting CRC when enhanced 
using advanced techniques. This study aimed to develop a deep learning model (DLM) to detect CRC using KUB radio-
graphs. This retrospective study was conducted using data from the Tri-Service General Hospital (TSGH) between January 
2011 and December 2020, including patients with at least one KUB radiograph. Patients were divided into development 
(n = 28,055), tuning (n = 11,234), and internal validation (n = 16,875) sets. An additional 15,876 patients were collected from 
a community hospital as the external validation set. A 121-layer DenseNet convolutional network was trained to classify 
KUB images for CRC detection. The model performance was evaluated using receiver operating characteristic curves, with 
sensitivity, specificity, and area under the curve (AUC) as metrics. The AUC, sensitivity, and specificity of the DLM in the 
internal and external validation sets achieved 0.738, 61.3%, and 74.4%, as well as 0.656, 47.7%, and 72.9%, respectively. The 
model performed better for high-grade CRC, with AUCs of 0.744 and 0.674 in the internal and external sets, respectively. 
Stratified analysis showed superior performance in females aged 55–64 with high-grade cancers. AI-positive predictions 
were associated with a higher long-term risk of all-cause mortality in both validation cohorts. AI-enhanced KUB X-ray 
analysis can enhance CRC screening coverage and effectiveness, providing a cost-effective alternative to traditional methods. 
Further prospective studies are necessary to validate these findings and fully integrate this technology into clinical practice.

Keywords  Artificial intelligence · Deep learning model · Colorectal cancer · Kidney, ureter and bladder radiographs

Introduction

Colorectal cancer (CRC) is the third most diagnosed cancer 
and the fourth leading cause of cancer-related deaths glob-
ally, with prevalence increasing significantly in recent years 

[1]. CRC screening has been shown to be highly effective 
in reducing both the incidence and mortality of the disease 
[2]. Common screening methods include guaiac-based fecal 
occult blood tests (gFOBTs), immunochemical tests (FITs), 
and colonoscopy, among which FOBT is currently the most 
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used. However, owing to the inconvenience of sample col-
lection, improper ways of sample collection by patients, and 
low patient compliance, the results of FOBT can be affected. 
All these methods often lead to colonoscopy, which allows 
polypectomy and ongoing surveillance or symptom evalu-
ation [3]. However, colonoscopy suffers from low coverage 
in CRC screening owing to fears of its invasive nature and 
procedural risks, and its effectiveness is highly dependent 
on the operator [4]. Therefore, a high coverage method for 
identifying high-risk CRC is necessary.

Kidney, ureter, and bladder (KUB) radiography, a type of 
plain abdominal radiography, is primarily used to assess the 
urinary system, such as to detect kidney stones, and helps 
diagnose other conditions affecting the gastrointestinal (GI) 
system by analyzing gas patterns, obstructions, and calci-
fications of the bowel [5, 6]. There are some limitations to 
KUB radiography, including low sensitivity and specificity 
for diagnosing specific diseases, presentation of nonspecific 
findings, and potential for misinterpretation [7, 8]. Moreo-
ver, a study indicated particularly poor results for diagnosing 
conditions such as appendicitis, pyelonephritis, pancreatitis, 
and diverticulitis, as well as showed high interobserver vari-
ability in the assessment of colon obstruction [9]. Despite 
these challenges, KUB X-ray images are widely used and 
considered the first-line investigation in the emergency room 
(ER), especially in patients with abdominal issues [7]. Sev-
eral conditions may lead to colonic obstruction, of which 
CRC is one of the major leading causes [10]. In addition, 
physicians have used KUB to evaluate early large bowel 
obstruction (LBO) with a sensitivity of 84% [11], suggest-
ing the potential of using KUB X-ray images as a detection 
tool for CRC, particularly when enhanced with advanced 
techniques for recognizing specific patterns.

Recent advancements in artificial intelligence (AI), spe-
cifically deep learning models (DLMs), have shown promise 
in the field of colonic diseases for tasks such as identify-
ing and classifying colonic polyps, as well as improving 
detection rates of early cancerous lesions [12]. One study 
demonstrated a convolutional neural network (CNN) iden-
tified polyps with an AUC of 0.991 [13]. DLMs have been 
extensively applied in computed tomography (CT), mag-
netic resonance imaging (MRI), and colonoscopy for detect-
ing bowel lesions [14, 15]. While KUB radiography has a 
lower resolution than the previous mentioned radiographs, 
previous studies using DLMs with plain abdominal radiog-
raphy have demonstrated significant potential, such as a high 
area under the curve (AUC) of 0.961, for identifying small 
bowel obstructions [16]. To the best of our knowledge, there 
remains a lack of DLM-enabled KUB X-rays for detecting 
CRC, which may be useful for identifying high-risk patients 
because of their high coverage rate.

In this study, based on previous research highlighting 
the potential of integrating DLM with medical imaging and 

considering that KUB imaging is widely used for its non-
invasive, cost-effective, and high coverage nature in first-line 
evaluating bowel obstructions compared to CT, MRI, and 
colonoscopy, additionally, the low compliance rate of FOBT 
further motivates the exploration of alternative screening 
methods. Therefore, we hypothesized that DLMs can effec-
tively classify KUB images for the detection of CRC as a 
screening method. Although AI-enabled KUB analysis may 
identify some false-positive cases such as gFOBTs and FITs, 
a previous study has demonstrated a higher risk of mortal-
ity in AI-predicted false-positive cases compared to true-
negative cases [17]. Therefore, we proposed exploring the 
additional potential of the AI model for predicting prediction 
from gFOBTs and FITs.

This study used a large dataset from two hospitals to 
develop a robust AI model for CRC detection using KUB 
X-rays. We presented a novel AI-enabled approach for 
early CRC detection using KUB x-ray images, offering a 
promising alternative to traditional screening methods with 
high-grade tumor detection potential. This cost-effective, 
accessible, and less invasive method could positively impact 
clinical practices and improve colorectal cancer tumor detec-
tion rate.

Related Works

The application of computer vision in the diagnosis of colo-
rectal cancer can be traced back to a study in 1990 [18], 
which utilized a machine vision analysis system to differenti-
ate between colonic adenoma, adenocarcinoma, and normal 
colonic tissue. In recent years, with the rapid advancement 
of AI, its use in medicine has become increasingly promi-
nent. Among AI techniques, deep learning models, particu-
larly those based on CNN, have emerged as a primary tool 
for medical imaging tasks. Research in AI-assisted colorec-
tal cancer diagnosis encompasses various modalities such as 
CT, MRI, colonoscopy, and histopathological imaging, and 
addresses tasks including detection, classification, segmen-
tation, and survival prediction [15]. In the following para-
graph, recent studies with objectives similar to this research 
will be discussed.

In 2024, Marcello Di Giammarco et al. focuses on utilized 
deep learning for colon cancer diagnosis through histologi-
cal image analysis [19]. Using 5000 images per class (benign 
tissue and adenocarcinoma) via data augmentation, the 
study tested several models, including ResNet50, DenseNet, 
VGG19, Inception-V3, EfficientNet, and MobileNet. 
MobileNet achieved the best performance, with near 99% 
accuracy. A key feature of the study is the use of explainable 
AI, employing Class Activation Mapping (CAM) techniques 
such as Grad-CAM to provide visual explanations, improv-
ing model reliability. The results highlight model ability to 
effectively classify colon cancer.
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In 2022, Muthu Subash Kavitha et al. primarily used a 
ResNet-18 CNN model with transfer learning as the pri-
mary approach for detecting colorectal cancer and ana-
lyzing histopathological images [20]. The primary data 
used in the model consists of medical imaging data, par-
ticularly endoscopic and whole-slide images, which are 
processed using CNN architectures. The research empha-
sizes the development of end-to-end and transfer learning 
techniques to automate feature extraction, reduce manual 
intervention, and improve the accuracy of cancer detec-
tion. The main result of the study indicates that deep learn-
ing models, particularly CNN-based architectures, show 
high diagnostic accuracy in predicting invasive cancer 
from medical images.

In 2021, Masud et al. focus on developing a deep learn-
ing framework to classify lung and colon cancer using 
histopathological images [21]. The dataset used in this 
study is the LC25000 dataset, which contains 25,000 color 
images of five different tissue types, including both benign 
and malignant variations of lung and colon cancer tissues. 
They employed a CNN model for the classification task, 
extracting features using image processing techniques such 
as 2D Discrete Fourier Transform (DFT) and 2D Discrete 
Wavelet Transform (DWT). The proposed model achieved 
a maximum classification accuracy of 96.33%, demonstrat-
ing its high reliability for identifying various types of lung 
and colon cancer tissues. The study concludes that the 
method can significantly aid in cancer diagnosis, offer-
ing a highly accurate, automated system that reduces the 
effort and time required for manual diagnosis by medical 
professionals.

Paper Organization

The paper is organized as follows: the method section covers 
data sources, model architecture, and statistical analysis; the 
results present dataset characteristics, model performance, 
and survival analysis; the discussion compares our findings 
with state-of-the-art approaches and acknowledges study 
limitations; finally, conclusions and suggestions for future 
research are provided.

Methods

Data Source

This study was approved by the Institutional Review Board 
of Tri-Service General Hospital (TSGH), Taipei, Taiwan 
(IRB no. C202305019). We performed a retrospective 
2-site study of the TSGH system between January 2011 and 
December 2020. The inclusion criteria of this study included 
patients who underwent at least one KUB X-ray at an aca-
demic medical center during the study period. The exclusion 
criteria for this study involved utilizing international classifi-
cation of diseases (ICD) code to exclude patients with a prior 
diagnosis of colorectal or other cancer history before under-
going KUB X-ray imaging during the study period. A total 
of 135,704 patients who underwent at least one KUB X-ray 
at an academic medical center during the study period were 
included. Figure 1 illustrates the generation of each dataset. 
There were 90,343 patients without a history of CRC before 
the KUB X-ray examination, and they were divided into 50% 

Fig. 1   Schematic of datasets generation. This chart was devised to 
assure a robust and reliable data set for training, validating, and test-
ing of the network. Once a patient’s data were placed in one of the 
datasets, that individual’s data were used only in that set, avoiding 

“cross-contamination” among the training, validation, and test data 
sets. We selected only one KUB X-ray for each patient at random and 
followed up 1 year. The details of the flow chart and how each of the 
datasets was used are described in the “Methods” section
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(45,058 patients), 20% (18,228 patients), and 30% (27,057 
patients) groups through randomization. We selected only 
one KUB radiograph for each patient randomly and followed 
up for one year without censored cases to establish the devel-
opment, tuning, and internal validation sets. The numbers of 
patients with colon cancer and healthy controls in the devel-
opment set for training the DLM, tuning set to guide the 
training process, and internal validation set for conducting 
an accuracy test of the DLM were 159 and 27,896, 61 and 
11,173, as well as 93 and 16,782, respectively. Additionally, 
88 patients with CRC and 15,788 healthy controls at a com-
munity hospital meeting the same criteria were included in 
the external validation set. Similarly, we selected only one 
KUB X-ray image per patient in both validation sets.

Implementation of the DLM

The KUB X-ray images were labeled as a binary classifi-
cation according to the electronic medical record (EMR), 
which recorded patients with or without CRC. The model 
architecture and training details were revised from those of a 
previous study that used a 121-layer DenseNet convolutional 
network [22]. This model was trained using data from the 
development set, and the hyperparameters were tuned based 
on model performance in the tuning set. The prediction out-
put of the model was the probability of each label with the 
presence or absence of CRC. The technical details were 
the same as those used in our previous study [22]. Detailed 
information of the DLM architecture and training process 
were provided in Supplemental Appendix S1.

Interpreting Model Predictions

To gain a better understanding of the prediction by our 
model, we created a heat map to identify the locations in the 
KUB X-ray image that contributed the most to the network 
classification using a class activation map (CAM). The most 
significant features used by our model in its predictions were 
visualized on an overlaid heatmap image as in Fig. 5.

Baseline Information and Data Collection

The baseline information was obtained from the EMR of 
each hospital. Disease histories were based on new diag-
noses according to the corresponding International Clas-
sification of Diseases (ICD), Ninth and Tenth Revisions, 
or laboratory tests. CRC histories were collected from the 
Taiwan Cancer Registry Coding Manual, which includes 
new diagnoses at our hospitals. Furthermore, we excluded 
ICD codes for cancers to avoid duplicate cases and ensure 
the feasibility of our data resources.

Outcome

Several outcomes of interest in both the internal and external 
validation cohorts were monitored. The primary outcome 
was the ability of the DLM to detect individual patients with 
CRC at the time of screening. The follow-up period was cal-
culated from the date of the randomly selected KUB radio-
graph for each patient. The secondary outcome was subse-
quent all-cause mortality in patients without CRC who had 
a positive prediction by the DLM. Data for at-risk patients 
were censored at the last known hospital encounter to limit 
bias from incomplete records.

Statistical Analysis

Characteristics of the different datasets were presented as 
mean and standard deviation, number of patients, or percent-
age, as appropriate. Comparisons were made using either 
analysis of variance or chi-square tests where suitable. The 
performance of our model in detecting CRC was assessed 
using receiver operating characteristic (ROC) curve analysis, 
with the AUC, sensitivity, and specificity used to demon-
strate the performance. The operating point was selected 
based on the maximum Youden index in the tuning set and 
applied to both validation sets using the same value. We also 
stratified patients using baseline information to explore the 
performance of the model across different populations.

Additionally, we performed a Kaplan–Meier survival 
analysis using the available follow-up data stratified by AI-
positive predictions for the outcome of all-cause mortality. 
A Cox proportional hazards model was used to calculate 
the hazard ratios (HRs) with 95% confidence intervals (95% 
CIs) for all data. To account for potential competing risks 
with all-cause mortality, the R package “cmprsk” was used 
to calculate cumulative incidence.

Results

Baseline Characteristics

Characteristics of patients in the development, tuning, as 
well as internal and external validation cohorts, are shown 
in Table 1. There were 159 (0.6%), 93 (0.6%), and 88 (0.6%) 
patients with colon cancer in the development, internal vali-
dation, and external validation cohorts, respectively. In the 
development cohort, patients were younger, the proportion 
of males was lower, and the disease history was shorter than 
in the external validation cohort. The comparisons between 
patients with colon cancer and controls are shown in Table 2. 
There were 52 (55.9%) and 31 (35.2%) patients with tumor 
stages 3–4 (high grade) in the internal and external vali-
dation cohorts, respectively. In both validation cohorts, the 
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Table 1   Baseline characteristics 
in each dataset

ED, emergency department; IPD, inpatient department; OPD, outpatient department; BMI, body mass 
index; DM, diabetes mellitus; HTN, hypertension; HLP, hyperlipidemia; CKD, chronic kidney disease; 
CAD, coronary artery disease; HF, heart failure; COPD, chronic obstructive pulmonary disease

Development Tuning Internal validation External validation

Colon cancer
  With 159 (0.6%) 61 (0.5%) 93 (0.6%) 88 (0.6%)
  Without 27,896 (99.4%) 11,173 (99.5%) 16,782 (99.4%) 15,788 (99.4%)

KUB X-ray source
  ED 9285 (33.1%) 3740 (33.3%) 5566 (33.0%) 5491 (34.6%)
  IPD 2526 (9.0%) 982 (8.7%) 1553 (9.2%) 1291 (8.1%)
  OPD 16,244 (57.9%) 6512 (58.0%) 9756 (57.8%) 9094 (57.3%)

Demography
  Gender (male) 15,106 (57.0%) 6108 (57.8%) 9170 (57.5%) 9303 (58.6%)
  Age (years) 46.9 ± 22.2 47.0 ± 22.2 46.7 ± 22.2 49.9 ± 21.6
  BMI (kg/m2) 23.8 ± 4.6 23.9 ± 4.6 23.8 ± 4.6 24.2 ± 4.4

Disease history
  DM 2900 (10.9%) 1171 (11.1%) 1682 (10.6%) 2509 (15.8%)
  HTN 407 (1.5%) 157 (1.5%) 263 (1.6%) 393 (2.5%)
  HLP 3747 (14.1%) 1463 (13.8%) 2186 (13.7%) 3699 (23.3%)
  CKD 1257 (4.7%) 464 (4.4%) 733 (4.6%) 932 (5.9%)
  CAD 2034 (7.7%) 853 (8.1%) 1212 (7.6%) 1895 (11.9%)
  HF 649 (2.4%) 265 (2.5%) 374 (2.3%) 662 (4.2%)
  COPD 1812 (6.8%) 732 (6.9%) 1113 (7.0%) 1864 (11.7%)

Table 2   Comparison between 
colon cancer cases and controls

ED, emergency department; IPD, inpatient department; OPD, outpatient department; BMI, body mass 
index; DM, diabetes mellitus; HTN, hypertension; HLP, hyperlipidemia; CKD, chronic kidney disease; 
CAD, coronary artery disease; HF, heart failure; COPD, chronic obstructive pulmonary disease

Internal validation External validation

Case Control p-value Case Control p-value

Grade
  3–4 52 (55.9%) 31 (35.2%)
  1–2 36 (38.7%) 46 (52.3%)
  Unknown 5 (5.4%) 11 (12.5%)
  KUB X-ray source  < 0.001  < 0.001
  ED 21 (22.6%) 5545 (33.0%) 21 (23.9%) 5470 (34.6%)
  IPD 23 (24.7%) 1530 (9.1%) 19 (21.6%) 1272 (8.1%)
  OPD 49 (52.7%) 9707 (57.8%) 48 (54.5%) 9046 (57.3%)

Demography
  Gender (male) 53 (57.6%) 9117 (57.5%) 0.986 50 (56.8%) 9253 (58.6%) 0.734
  Age (years) 71.9 ± 14.8 46.6 ± 22.1  < 0.001 70.4 ± 15.0 49.8 ± 21.6  < 0.001
  BMI (kg/m2) 23.0 ± 3.7 23.8 ± 4.6 0.148 23.4 ± 4.3 24.2 ± 4.4 0.134

Disease history
  DM 15 (16.3%) 1667 (10.5%) 0.072 18 (20.5%) 2491 (15.8%) 0.230
  HTN 0 (0.0%) 263 (1.7%) 0.410 4 (4.5%) 389 (2.5%) 0.174
  HLP 13 (14.1%) 2173 (13.7%) 0.907 26 (29.5%) 3673 (23.3%) 0.165
  CKD 9 (9.8%) 724 (4.6%) 0.038 11 (12.5%) 921 (5.8%) 0.008
  CAD 8 (8.7%) 1204 (7.6%) 0.692 16 (18.2%) 1879 (11.9%) 0.070
  HF 6 (6.5%) 368 (2.3%) 0.021 8 (9.1%) 654 (4.1%) 0.030
  COPD 12 (13.0%) 1101 (6.9%) 0.022 16 (18.2%) 1848 (11.7%) 0.060
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number of KUB radiographs from the inpatient department 
(IPD) was significantly higher in patients with cancer than 
in those without cancer. In addition, patients with cancer 
were significantly older than those without cancer in both 
validation cohorts.

Performance of KUB X‑Ray to Detect CRC​

The AUC of the performance of DLM in detecting CRC 
using KUB was 0.738, with corresponding sensitivity and 
specificity of 61.3% and of 74.4%, respectively, in the 
internal validation cohort, while in the external validation 
cohort, the AUC was 0.656, with corresponding sensitivity 
and specificity of 47.7% and 72.9%, respectively, as shown 
in Fig. 2. Furthermore, in internal and external validation 
cohorts, the algorithm performed better in predicting high-
grade CRC, with AUCs of 0.744 and 0.674, respectively. 

The model was further evaluated with F1-score, accuracy, 
and confusion matrix as shown in Supplementary Table 1 
and Fig. S1. In addition, we performed a stratified analy-
sis to compare AUCs in detecting CRC using our DLM 
algorithm. The results are shown in Fig. 3. In the internal 
validation cohort, the model had an outstanding predic-
tion performance (AUC = 0.977 95%CI 0.937–1.000) for 
female patients who were in the group of 55–64 years 
old and were diagnosed with high-grade colon cancer. In 
the external validation cohort, the model performed well 
for females under 55 years of age and those aged 55–64 
with high-grade cancer, with AUCs of 0.913 (95% CI 
0.832–0.995) and 0.914 (95% CI 0.754–1.000), respec-
tively. Furthermore, in this analysis, the AUC showed a 
decreasing trend for females who were diagnosed with 
high-grade cancer after 74 years of age in both the inter-
nal and external validation cohorts. No other significant 
differences were observed between the subgroups.

Fig. 2   The ROC curve of DLM predictions based on KUB X-ray to 
detect colon cancer. The cutoff point was selected based on the max-
imum of Youden’s index in tuning set and presented using a circle 
mark, and the area under ROC curve (AUC), sensitivity (Sens.), spec-
ificity (Spec.), positive predictive value (PPV), and negative predic-

tive value (NPV) were calculated based on it. The high grade was the 
pathology or clinical tumor stage of ≥ 3, and the low grade was the 
tumor stage of ≤ 2. Patients without pathological or image report were 
excluded in these grade-stratified analyses
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Prediction of Long‑Term Incidence of All‑Cause 
Mortality

The predicted incidence of all-cause mortality in patients 
without colon cancer stratified by the AI-predicted cancer 
after adjustment for age and sex is shown in Fig. 4. In 
the internal validation cohort, the cumulative all-cause 
mortality was 3.4% at 2.5 years and 5.3% at 5 years for 
AI-positive patients compared with 0.4% and 0.9% for 

AI-negative patients, respectively. In the external valida-
tion cohort, the rates were 2.7% and 5.5% for AI-positive 
patients, as well as 0.4% and 1% for AI-negative patients. 
This indicated a higher risk of future death when patients 
without cancer were detected positive for cancer than 
those detected negative for cancer by our DLM (inter-
nal and external validation cohorts HR [95% CI]: 2.13 
[1.60–2.83] and 1.64 [1.24–2.16]).

Fig. 3   Stratified analysis for the area under ROC curve (AUC) comparison in detecting colon cancer using DLM predictions based on KUB 
X-ray. The analyses are stratified by the source of KUB X-ray and demographic data
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Fig. 4   Long-term incidence of 
developing all-cause mortality 
in patients without colon cancer. 
The analyses are conducted both 
in internal and external valida-
tion sets. The table shows the 
at-risk population and cumula-
tive risk for the given time inter-
vals in each risk stratification

Fig. 5   Class activation map (CAM) of selected patients in validation 
sets. Images demonstrate how artificial intelligence (Al) using kidney, 
ureter, bladder (KUB), and X-ray makes decisions. Up: Original KUB 
X-ray in posterior-anterior view. Down: Class activation maps gener-
ated by overlays colored probability maps onto the original image. 
Observations indicate that Al-enabled KUB X-ray primarily uses 
information from the large bowel region (peripheral), while exclud-
ing regions overlapping with small bowel region (central). This phe-
nomenon may be attributed to the anatomical structure of large bowel 
that commonly lies in the peripheral region of abdomen, which pro-
vides Al-enabled KUB X-ray with a clearer perspective for assessing 

colonic lesion or manifestations such as large bowel obstruction. The 
Al-enabled KUB X-ray mainly focused on the large bowel located in 
the lower part of the abdomen around pelvic region: A a 99-year-old 
woman with hypertension and senile dementia and with the diagnosis 
of adenocarcinoma of descending colon; B a 65-year-old woman with 
abdominal distention and bloody stool and with diagnosis of adeno-
carcinoma of sigmoid colon; C a 61-year-old man with epigastric 
pain and constipation and a diagnosis of adenocarcinoma of sigmoid 
colon; and D an 79-year-old man with DM and HCVD and with a 
diagnosis of adenocarcinoma of sigmoid-rectal junction
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Lesion Localization Through Heat‑map

Our study provided an additional feature using a heat map 
for highlighting potential cancer regions in KUB X-rays. In 
Fig. 5, four KUBs that were mainly distal CRC cases are 
presented, which are highlighted in the predicted heatmap. 
The true cancerous region highly overlapped with the areas 
highlighted by the AI, which was verified by experienced 
physicians in the EMR.

Discussion

Effective and broadly used CRC screening is essential to 
increase the chances of successful treatment and reduce 
CRC-related mortality [23]. To the best of our knowledge, 
this is the first study to explore a noninvasive and accessible 
CRC screening method using AI-KUB. In this study, we 
developed a DLM to detect CRC using KUB X-ray images, 
achieving an AUC of 0.738, with sensitivity and specific-
ity of 61.3% and 74.4%, respectively, in the internal valida-
tion cohort. Furthermore, the DLM demonstrated enhanced 
performance in detecting high-grade CRC, with an AUC 
of 0.744. Additionally, our AI-KUB algorithm may serve 
as a noninvasive and broadly applicable screening tool for 
assessing the long-term risk of all-cause mortality in patients 
without CRC.

There are several manifestations of CRC, including LBO, 
bowel dilation, and bowel wall thickening [24]. LBO is pri-
marily caused by colonic adenocarcinoma, accounting for 
over 60% of all cases. KUB is often the first imaging study 
performed in patients suspected of having LBO [11]. How-
ever, the accuracy of human-read KUB in diagnosing LBO 
ranges from 50 to 80%, with moderate specificity [25]. In 
our study, our DLM achieved an AUC of 0.74, indicating 
relatively good performance in detecting CRC. This differ-
ence may be because the KUB is a 2-dimensional image, 
which physicians often investigate merely by identifying 
the bowel diameter and air–liquid level, resulting in limited 
capability [11]. In contrast, compared with the accuracy of 
human-read KUB, our results suggest that AI may have the 
ability to identify additional findings to detect CRC. In sum-
mary, AI-KUB has the potential and reasonable capabilities 
to identify patterns, such as LBO and dilated large bowels, 
for CRC detection.

High-grade CRC tumors, which show over 50% his-
tological gland formation, indicate poorer differentia-
tion than low-grade tumors and generally have a worse 
prognosis and lower survival rates [26, 27]. Therefore, we 
assumed that the current screening method, FOBT, would 
have better screening performance for high-grade CRC 
tumors. However, few previous studies have demonstrated 
this finding. One possible explanation may be that most of 

the screening cases are asymptomatic and are more corre-
lated with low-grade CRC tumors, while high-grade CRC 
tumors usually develop more symptomatically, which may 
directly lead to a diagnostic colonoscopy; therefore, the 
screening performance of high-grade CRC may be less 
discussed [28]. In addition, a CRC epidemiology report 
showed that high-grade CRC is associated with a poor 
5-year survival rate of only 12% [29]. In our study, our 
model achieved relatively good performance in detecting 
high-grade CRC, with AUC of 0.744 and 0.674 in both 
validation cohorts. This result indicates that our algorithm 
has the potential to serve as an effective opportunistic 
screening tool for patients with high-grade CRC who are 
asymptomatic to have early awareness before performing 
a diagnostic colonoscopy, enabling early detection, and 
improving survival rates.

The manifestations of CRC, such as a dilated large bowel, 
increased gas retention, and colonic obstruction, may con-
sequently lead to death [24]. Despite the potential of AI to 
identify these characteristics and increase the diagnosis 
rate, there remains a concern among physicians about false 
positives that may result in psychological distress in patients 
who are alerted [30]. Because of the limited research on 
using AI-enabled abdominal X-rays, we found that some 
previous studies using AI-enabled chest X-ray (CXR) to 
diagnose disease also encountered false-positive issues [31, 
32]. However, these studies consistently found a correlation 
between false-positive results and preexisting abnormalities 
or adverse disease outcomes. In addition to effectively iden-
tifying patients with CRC, AI-positive results may predict 
long-term risk of mortality [33]. In our study, we also vali-
dated that the long-term incidence of all-cause mortality in 
patients without a CRC diagnosis, stratified by AI-positive 
results, was significantly increased by 1.5- to twofold com-
pared with those stratified by AI-negative results in both 
validation cohorts. These results suggest that AI can iden-
tify not only the abnormalities of the targeted disease but 
also subtle findings that are linked to severe medical crises, 
which explains the findings of increased all-cause mortality 
in the AI-positive group. However, further prospective stud-
ies are needed to validate this predictive model.

Statistically, left-sided CRC accounts for most CRC 
cases, a distribution that was also observed in our study [34]. 
Compared to right-sided CRC, left-sided tumors exhibit 
different molecular characteristics and histology, such as a 
higher prevalence of polypoid-like tumors [34]. Our DLM 
demonstrated a reasonable ability to detect CRC lesions 
using KUB radiography, particularly in the distal colon as 
shown in Fig. 5. This result aligns with the findings from 
FOBT screening and may be attributed to the etiology of 
CRC, where tumors in the distal colon typically present as 
polyps, unlike the flat morphology observed in the proximal 
colon [35, 36]. However, further investigation is required.
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We also compared our method to some state-of-the-art 
approaches. Most of the studies use CNN-based architecture 
to accomplish the image classification tasks. Marcello Di 
Giammarco et al. proposed a study testing different DLMs 
using histological images and achieved over AUC of 0.99 on 
MobileNet [19]. This outstanding performance may because 
of the histological image has a more microscopic view to the 
pathological aspects of the disease. However, in the same 
study, they also try DenseNet but only reach AUC of 0.696, 
while our DLM achieved AUC of 0.74, indicating that our 
approach of using KUB image may have sufficient potential 
in training model for detecting colon cancer.

AI-enabled KUB radiographs have several clinical appli-
cations. First, it may serve as an improved tool for CRC 
screening owing to its extensive coverage. Compared with 
the current CRC screening method, the gFOBT, which has 
an AUC of 0.77, our DLM demonstrated an AUC of 0.74 
[37]. Although the AUC was slightly lower than that of 
gFOBT, AI-KUB may be more effective owing to issues 
of adherence and limited coverage associated with gFOBT 
[38]. Second, integrating AI with KUB enables not only 
the detection of urinary issues and early assessments in 
abdominal emergencies but also opportunistic CRC screen-
ing. Third, this algorithm can be incorporated into primary 
healthcare to identify patients at long-term risk of mortality.

This study had several limitations. First, being a retro-
spective study, further prospective studies are necessary to 
validate the performance and clinical applications of our AI-
KUB algorithm. Second, cancer registration files may miss 
diagnoses from other hospitals, but the influence is likely 
minimal. Third, the limited number of CRC cases in our 
study could affect the model’s robustness and generalizabil-
ity, necessitating further evaluation. Additionally, there was 
an issue of the data imbalance that the tumor location of the 
cases in our study were mostly in the distal colon, the further 
cases of proximal colon lesion included may be necessary 
for improving our algorithm. Fourthly, the relatively low 
performance of our DLM in the external validation cohort 
may be due to the inadequate CRC cases and the patients 
from the community hospital may not be representative 
enough to the population. Lastly, despite heat map analy-
ses confirming their rationality, the explanations for how AI 
recognizes images to detect lesions remain unclear. Further 
evaluation and validation are still required for clinical use.

Conclusion

In conclusion, this study introduced a novel approach for 
early CRC detection using AI-enabled KUB X-ray images, 
marking an advancement in non-invasive cancer screening 
methods. The application of the DLM to KUB X-rays offers 
a promising alternative to traditional screening techniques 

and is effective for high-grade tumor detection. This study 
not only demonstrated the potential for improving early 
detection but also indicated a higher risk of long-term all-
cause mortality in patients without CRC. By providing a 
cost-effective, accessible, and less invasive option, this AI-
enabled method may potentially impact current clinical prac-
tices and patient outcomes in CRC care.

There are several contributions of this study: (i) It has 
a potential to use as a real-time opportunistic screening 
tool. (ii) It can provide an additional screening method for 
younger population. (iii) It is a more non-invasive and cost-
effective screening method.

In this study, we demonstrated that KUB imaging, one 
of the most used modalities, has the potential to serve as 
a valuable image type for training DLMs in the detection 
of colorectal cancer. In future work, we planned to explore 
other state-of-the-art models trained on KUB X-ray images, 
while also addressing dataset imbalances, with the goal of 
developing a non-invasive alternative screening method for 
colorectal cancer.
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